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Introduction

Flourescence
labelling
and
microscopy

»

Foci appear as bright spots inside cells. Analysis of foci can provide information about
cellular mechanisms and pathways, fx DNA damage, DNA repair, the impact of a drug.
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* Manual annotation = cumbersome and time consuming.

* Manual foci detection is affected by human inconsis-
tencies [1] = different biologi

* There exists a desire for a fully automated and consistent
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Problem Detection pipeline = We needa pipeline that enables us to detect and quantify foci automatically Binary
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Investigate the app- e
lication of CNNs for neural - » Max »
the task of foci det- network V
ection.
Convolutional neural networks for segmentation (inspired by u-net2)
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Data Results Accuracy loU
i flatFociNet 0.9930 + 0.0014 0.5167 +0.0188
194 images We need multiple performance measures ———
Images converted to (even more than the ones shown on this poster) midFociNet 0.9953 +0.0001 0.5484 +0.0523
acquired on grayscale images Test accuracy deepFociNet 0.9961 + 0.0001 0.6651 + 0.0127
1.00
Xcyto®10 of size 0se] T parener veryDeepFociNet 0.9961 + 0.0001 0.6440 + 0.0070
 Deeprodtet
1920x1440 :: ol all ANOVA and Tuckey’s tests showed no statistical significant difference bet-
} Zoss ween the performance of deepFociNet and veryDeepFociNet.
P - goos
v 04 » We reach a limit for which increasing the depth and complexity does
0.93 .
Training set  Validation set Test set - not further increase the performance.
105 images 41 images 48 images os1 o
\ ragenonar. Validation by experts
- \ Equal Prediction Ground thruth
v performance (%) best (%) best (%)
Data augmentation i
& How well foi labels 35.42 +23.48 29.86 +8.42 347223
Random elastic cover foci pixels
: Test loU ( H H
deformatins W= v How well adjacent foci 52.08 49,55 22,92 +2.08 25.00 + 20.42

(and other methods...)
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of CNNs for the task of foci detection.

T-tests showed no statistical significant difference in performance between
predictions and ground truth. Additionally, the large variances confirm var-
iations in human foci assignment.

» Overall, this study demonstrated proof of concept of the application
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